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Abstract: The Erlang B formula represents the steady-state blocking prob-
ability in the Erlang loss model orM/M/s/s queue. We derive asymp-
totic expansions for the offered load that matches, for a given number of
servers, a certain blocking probability. In addressing this inversion problem
we make use of various asymptotic expansions for the incomplete gamma
function. A similar inversion problem is investigated for the Erlang C for-
mula.
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1 Introduction

The Erlang B formula is perhaps the most classical result in queueing theory, representing
the steady-state blocking probability in the Erlang loss model orM/M/s/s queue. De-
rived by A.K. Erlang in 1917, it has been the subject of extensive study ever since. Its
wide range of applications made many researchers investigate the Erlang B formula from
various angles. This paper deals with the open problem of inverting the Erlang B formula.

The reader is referred to the elucidation of Erlang’s work and era in Brockmeyer et
al. [2], and to Cooper [3], Kosten [11], Riordan [12], Syski [13] and Whitt [18] for some
more of the historical flavor. The Erlang loss model hass homogeneous servers working in
parallel and no extra waiting space. Customers that find alls servers busy upon arrival are
blocked (lost). It is further assumed that customers arriveaccording to a Poisson process
with rateν and that the service times are independent and exponentially distributed with
mean1/µ. We define the offered load asλ = ν/µ, and the service utilization asρ = λ/s.
The Erlang B formula is then given by

B(s, λ) =
λs/s!

∑s
k=0 λ

k/k!
. (1.1)

The work of Jagerman [8] contains a large variety of exact, asymptotic and approxima-
tive representations ofB(s, λ), and serves as a standard reference. As a desirable further
investigation, Jagerman mentions in the conclusion of [8] the inversion ofB(s, λ), which
boils down to finding the loadλ such that

B(s, λ) = p, (1.2)
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for somep ∈ (0, 1) ands ∈ N. A few years later, Jagerman [9] himself developed an
efficient numerical algorithm based on Newton’s method. Forthe strongly related problem
of solving (1.2) fors givenλ andp, Jagerman [9] also proposed Newton’s method, and
bounds ons were derived in [1] and [6]. An exact and comprehensive treatment of the
inversion problem, though, seems still largely missing from the literature.

As pointed out by Jagerman and many others, the Erlang B formula can be expressed
in terms of the incomplete gamma function. Temme [15] has considered the inversion
problem for the incomplete gamma function based on a uniformasymptotic expansion
developed in [14]. We shall derive various asymptotic expansions for the inverseλ of
the Erlang B formula using asymptotic expansions for the incomplete gamma function.
We also show how these asymptotic techniques can be transferred to a similar inversion
problem for the Erlang C formula, which represents the steady-state probability of delay
in the Erlang delay model orM/M/s queue. That the same machinery can be applied is
not surprising, since the Erlang B and C formulae are intrinsically intertwined, cf. (7.1).

Of fundamental importance in the performance analysis of stochastic systems, the Er-
lang B and C formulae have found numerous applications. The inverse is of concern in
dimensioning problems. The results in this paper may contribute to future investigations
in two ways.

First, we derive asymptotic expansions of which the first fewterms serve as highly
accurate approximations. Such approximations may reduce computation time in large op-
timization problems or simulation settings, or may allow for an exact, formal, solution of
an optimization problem in which the true inverse is replaced by its approximation. More-
over, the second terms in the asymptotic expansions render both quantitative and qualitative
insight into the speed of convergence to the asymptotic regime at hand.

Second, while the first few terms of the expansion yield sharpapproximations already,
even sharper results may be obtained by either including more terms, or using Newton’s
method; see (6.1) and (7.16). The starting value of Newton’smethod, depending onp,
follows from our asymptotic framework. This avoids unfavorable situations like large
errors in successive approximations and, even worse, approximations that are found outside
the definition range of the variable to be computed; see [5, Chapter 10] for more examples.
Then, Newton’s method, with at most 4 iterations, yields theinverseup to at least 10 digits
precision, irrespective ofs andp.

2 Outline

The main objective of this paper is to find theλ−value of Equation (1.2) for a large value
of s, whereB(s, λ) is the Erlang B formula defined in (1.1). Throughout, we shalluse the
representation

B(s, λ)−1 = 1 + s! eλ λ−sQ(s, λ), (2.1)

with Q(s, λ) the incomplete gamma function given by

Q(s, λ) =
Γ(s, λ)

Γ(s)
=

1

Γ(s)

∫ ∞

λ
ts−1e−t dt. (2.2)

Clearly, (2.1) has meaning for non-integrals. Fig. 1 shows graphs ofB(s, ρs) for 0 ≤
ρ ≤ 5 ands = 1, 3, 5, 10, 25, 50, 100, 1000 (the far left curve is fors = 1, the far right
one fors = 1000). These graphs suggest the consideration of three regimes corresponding
to small, medium and large blocking probability. The transition from small to medium
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Figure 1: Graphs ofB(s, ρs) for 0 ≤ ρ ≤ 5 ands = 1, 3, 5, 10, 25, 50, 100, 1000 (the far
left curve is fors = 1, the far right one fors = 1000.

p, asλ increases, can occur rather abruptly. A smallp typically corresponds toλ < s,
while a largep corresponds toλ > s. To further investigate this relation, we derive from
asymptotic properties ofQ(s, λ), see§5 or [8, p. 540],

B(s, s) ∼ 6

4 + 3
√

2πs
, s→ ∞, (2.3)

and the relative error of this estimate is less than one percent for s > 5. Whenp in (1.2) is
less (larger) than the right-hand side of (2.3), we haveλ < s (λ > s), approximately.

We shall derive various asymptotic expansions for the inverseλ of (1.2), using existing
asymptotic expansions for the incomplete gamma function. Based on the above observa-
tions, we shall consider three asymptotic regimes:

Large blocking probability. This typically corresponds to an overload situationλ ≫ s,
in which case the Erlang B formula is well approximated byB(s, λ) ≈ (λ − s)/λ and
hence, for givens andp, λ ≈ s/(1− p). In §3 we derive the higher terms of the expansion
for λ using two standard asymptotic expansions for the incomplete gamma function.

Small blocking probability. This corresponds to the underload situationλ < s, in which
case the Erlang B formula is well approximated byB(s, λ) ≈ e−λλs/s!, leading to a first
order approximation for the inverseλ ∼ ρ0s for s→ ∞, whereρ = ρ0 solves

(pess!ss)1/s = ρe1−ρ. (2.4)

In §4 we identify some of the higher terms of the asymptotic expansionλ ∼ ρ0s + ρ1 +
ρ2s

−1 + . . . using the connection betweenQ(s, λ) and the confluent hypergeometric func-
tion. All higher terms can be expressed in terms ofρ0.

General case. For all other cases withp ∈ (0, 1) we employ a uniform asymptotic
expansion for the incomplete gamma function derived in [14], in which the standard nor-
mal distribution function (or error function) is the leading approximant. In [15] the first
coefficients in the expansion were derived by using a perturbation method for a differential
equation, but this approach cannot be transferred directlyto the inversion of the Erlang B
formula. We describe an alternative method that uses Taylorexpansions and the connection
between the derivatives ofQ(s, λ) and Hermite polynomials. This is done in§5.
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Table 1: Numerical results of the approximation (3.4) forp = 4
5 (q = 1

4 ) and several values
of s.

s λ B(s, λ) rel. error

5 2.389 101 8.006 10−1 7.53 10−4

10 4.896 101 8.007 10−1 8.45 10−4

25 1.242 102 8.007 10−1 9.19 10−4

50 2.497 102 8.008 10−1 9.47 10−4

75 3.752 102 8.008 10−1 9.57 10−4

100 5.007 102 8.008 10−1 9.62 10−4

250 1.254 103 8.008 10−1 9.71 10−4

500 2.509 103 8.008 10−1 9.74 10−4

1000 5.018 103 8.008 10−1 9.75 10−4

In §6 we discuss Newton’s method for further improving the accuracy of the approxi-
mation for the inverse found by our asymptotic techniques, and finally, in§7, we apply the
same asymptotic techniques to address the inverse problem for the Erlang C formula.

3 Inversion for p ↑ 1

Whenp ↑ 1 the solutionλ of (1.2) satisfiesλ ≫ s (see§2), and we can use the standard
asymptotic expansion of the incomplete gamma function (see[17, p. 280])

Γ(s, λ) ∼ λs−1e−λ
∞
∑

n=0

(−1)n(1 − s)n
λn

, (3.1)

where(α)n is the Pochhammer symbol defined by(α)0 = 1 and(α)n = Γ(α + n)/Γ(α)
for n = 1, 2, 3, . . .. Whenα is a non-positive integer we use the following interpretation
of the Pochhammer symbol. We have form,n = 0, 1, 2, . . .

(−m)n =







0, if n > m,

(−1)nm!/(m− n)!, if n ≤ m.
(3.2)

It follows that fors = 1, 2, 3, . . . the series in (3.1) terminates and containss terms, giving
an exact representation.

By using (2.2) and the asymptotic expansion, the asymptoticinversion problem reads

q =
1 − p

p
∼ s

λ

∞
∑

n=0

(−1)n(1 − s)n
λn

. (3.3)

Whenq is small we can find an asymptotic expansion of the solutionλ in terms of a series
in powers ofq, which holds whether or nots is large. By inverting (3.3) we find

λ−1 ∼ q

s
− (s− 1)q2

s2
+

(s− 1)q3

s2
− (s− 1)(s2 + 1)q4

s4
+ . . . , (3.4)

and we see that it gives the exact resultλ−1 = q whens = 1.
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Table 2: Numerical results of the approximation (3.4) fors = 100 and several values ofp.

p λ B(s, λ) rel. error

0.60 3.082 102 6.7711 10−1 1.29 10−01

0.70 3.433 102 7.0992 10−1 1.42 10−02

0.80 5.007 102 8.0077 10−1 9.62 10−04

0.90 9.990 102 9.0002 10−1 1.67 10−05

0.99 9.999 103 9.9000 10−1 1.04 10−10

In Table 1 we give the results of numerical computations. We takep = 4
5 (q = 1

4 ) and
several values ofs. We have used the terms in (3.4) up to (and including) the termwith q4,
as shown in (3.4). We see a rather uniform error for the used values ofs. The relative error
is |B(s, λ)/p − 1|. In Table 2 we give the results of the approximation (3.4) fors = 100
and several values ofp.

3.1 Using an alternative asymptotic expansion

Next we try to solve (1.2) by using the asymptotic expansion of Γ(s, λ) given in Appendix
A; see (A.6). It follows that we can write (1.2) in the form of the asymptotic identity

q = r
∞
∑

n=0

Gn(r)

λn
, r =

s

λ
. (3.5)

BecauseG0(r) = 1/(1 − r), the first term approximation gives

q =
r

1 − r
⇒ r =

q

1 + q
⇒ λ =

s(1 + q)

q
, (3.6)

compare with (3.4). Note that this first term follows from theapproximationB(s, λ)−1 ≈
λ
λ−s for λ > s. In [9], Equation (46), it is proved that in factB(s, λ)−1 ≤ λ

λ−s . To find
higher approximations we write

λ0 =
s(1 + q)

q
, (3.7)

which givesq = s/(λ0 − s), and Equation (3.5) can be written as

s

λ0 − s
= r

∞
∑

n=0

Gn(r)

λn
, r =

s

λ
. (3.8)

In this section we havep ↑ 1, henceq ↓ 0, and we assume thatλ0 is large. Thus, we try to
find a solutionλ−1 of (3.8) of the form

λ−1 ∼ λ1λ
−1
0 + λ2λ

−2
0 + λ3λ

−3
0 + λ4λ

−4
0 + λ5λ

−5
0 + . . . , (3.9)

and we find by series manipulations

λ1 = λ2 = 1, λ3 = s, λ4 = 1 − s+ s2, λ5 = −4 + 7s − 3s2 + s3. (3.10)

In Table 3 we give the results of numerical computations. We takep = 4
5 (q = 1

4 ) and
several values ofs. We have used in (3.9) the terms up to (and including) the termwith
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Table 3: Numerical results of the approximation (3.9) forp = 4
5 (q = 1

4 ) and several values
of s.

s λ B(s, λ) rel. error

5 2.382441 101 8.000449 10−1 5.62 10−5

10 4.879344 101 8.000277 10−1 3.47 10−5

25 1.237737 102 8.000136 10−1 1.70 10−5

50 2.487669 102 8.000073 10−1 9.19 10−6

75 3.737646 102 8.000050 10−1 6.30 10−6

100 4.987635 102 8.000038 10−1 4.79 10−6

250 1.248761 103 8.000016 10−1 1.97 10−6

500 2.498761 103 8.000008 10−1 9.91 10−7

1000 4.998760 103 8.000004 10−1 4.98 10−7

Table 4: Numerical results of the approximation (3.9) fors = 100 and several values ofp.

p λ B(s, λ) rel. error

0.60 2.484512 102 6.001592 10−1 2.65 10−04

0.70 3.319500 102 7.000329 10−1 4.70 10−05

0.80 4.987635 102 8.000038 10−1 4.79 10−06

0.90 9.988913 102 9.000001 10−1 1.19 10−07

0.99 9.998990 103 9.900000 10−1 9.90 10−13

λ−4
0 . The relative error is|B(s, λ)/p − 1|. We see a better performance compared with

the results in Table 1. In Table 4 we give the results of the approximation (3.9) for fixed
s = 100 and several values ofp. Again, we see a better performance compared with the
results in Table 2.

4 Inversion for p ↓ 0

Another relatively simple asymptotic inversion is possible whenp is small. In that case we
expect a solution of (1.2) forλ < s (see§2). We use the relation

Γ(s, λ) = Γ(s) − γ(s, λ) (4.1)

and the convergent expansion (see [17, p. 279] or Theorem 5 inJagerman [8])

γ(s, λ) = λse−λ
∞
∑

n=0

λn

(s)n+1
, (4.2)

which can also be viewed as an asymptotic expansion for largevalues ofs, with λ fixed.
For the asymptotic inversion, however, it seems better to use the asymptotic expansion
given in Appendix B, see (B.6). When we use this in (2.1) we have the asymptotic inversion
problem

1

p
= 1 + s!λ−seλ −

∞
∑

n=0

gn(ρ)

sn
, ρ =

λ

s
. (4.3)
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The expansion holds for large values ofs, uniformly for fixedρ ∈ (0, 1).
Whenλ is small compared withs, the first term in the right-hand side of (4.1) is much

larger than the second term. Hence, first we consider the inversion of

1

p
= s!λ−seλ. (4.4)

We write
s! = Γ(s+ 1) =

√
2πs e−sssΓ∗(s), (4.5)

with, according to Stirling’s formula,

Γ∗(s) = 1 + O
(

s−1
)

, s→ ∞. (4.6)

Equation (4.4) can thus be written as

(

p
√

2πsΓ∗(s)
)1/s

= ρe1−ρ. (4.7)

Whenp is small we consider the solutionρ of this equation in the interval(0, 1) and denote
it by ρ0. Observe that the right-hand side of (4.7) has a maximum atρ = 1 (that is, when
λ = s), and a real solution is only possible whenp is small enough:p should satisfy

p ≤ 1√
2πsΓ∗(s)

. (4.8)

It follows that the method of this section fails if the equation in (4.7) does not have a
real solution. In that case it is better to use a different method for the transition areaλ ∼ s
(see§5). In Fig. 4 the lower curve indicates where in (4.8) the equal sign holds. For pairs
(s, p) properly below this curve the method of this section can be used.

To solve equation (4.7) and to obtain higher approximationsit is convenient to introduce
the quantityη defined by

1
2η

2 = ρ− 1 − ln ρ, ρ > 0, sign(η) = sign(ρ− 1). (4.9)

This relation plays a role in later sections also, and we givedetails on the inversion (that
is, findingρ whenη is given) in Appendix C.

It follows from (4.9) that
e−ssseλλ−s = e

1

2
sη2 , (4.10)

and that we can write (4.4) in the form

p
√

2πsΓ∗(s) = e−
1

2
sη2 . (4.11)

We denote the solution of this equation byη0. Since we assume thatp satisfies (4.8) and
that the correspondingρ−value belongs to(0, 1] , we haveη0 ≤ 0, that is,

η0 = −
√

−2

s
ln
(

p
√

2πsΓ∗(s)
)

. (4.12)

The corresponding value ofρ follows from inverting the relation in (4.9) forρ ≤ 1, and is
denoted byρ0.
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We next turn to the inversion of (4.3). By using (4.5) and (4.10), this equation can be
written in the form

1

p
= 1 +

√
2πsΓ∗(s)e

1

2
sη2 −

∞
∑

n=0

gn(ρ)

sn
. (4.13)

We eliminate
√

2πsΓ∗(s) by using (4.11) withη = η0 and obtain

p

∞
∑

n=0

gn(ρ)

sn
= p− 1 + e

1

2
s(η2−η2

0
). (4.14)

We assume that|η − η0| is small, and expandρ as

ρ = ρ0 +

∞
∑

n=1

ρn(η − η0)
n, (4.15)

where the first few coefficients are given by

ρ1 = − η0ρ0

1 − ρ0
, ρ2 =

ρ0(η
2
0 − (1 − ρ0)

2)

2(1 − ρ0)3
,

ρ3 = −ρ0η0(η
2
0(1 + 2ρ0) − 3(1 − ρ0)

2)

6(1 − ρ0)3
.

(4.16)

These values reduce to the first coefficients given in (C.4) whenη0 → 0. However, when
η0 = 0 we haveρ0 = 1, and the given valuesρj cannot be computed straightforwardly. In
fact, we need a limiting process forη0 → 0, or a series expansion for small values ofη0.
For example, by using (C.4) withη andρ replaced withη0 andρ0, respectively, we have

ρ1 = 1 + 2
3
η0 + O(η2

0), ρ2 = 1
3

+ 1
12
η0 + O(η2

0). (4.17)

In this section we assume thatρ0 is strictly less than unity, and we don’t need these expan-
sions.

It turns out, after formal asymptotic series operations, that η can be expanded in the
form

η = η0 + η1s
−1 + η2s

−2 + . . . . (4.18)

After substituting (4.15) and (4.18) into (4.14), and comparing equal powers ofs, we find

η1 =
1

η0
ln

(

1 +
pρ0

1 − ρ0

)

, (4.19)

and

η2 = −η
2
1(1 − ρ0)

2(1 − ρ0 + pρ0) + 2pρ0(1 + η0η1)

2η0(1 − ρ0)2(1 − ρ0 + pρ0)
. (4.20)

By using these values in (4.19), we invert (4.9) to obtain thecorrespondingρ−value, from
which we finally obtain an approximation forλ = sρ.

In Table 5 numerical results are given of the approximation (4.18) of Equation (4.3) for
p = 0.0005 andp = 0.0001 and several values ofs. These values ofp ands satisfy (4.8).
We see that the results become worse ass increases. To explain this, we observe that in the
table the ratioλ/s approaches unity for larger values ofs. In that case the approximation
(4.18) is not valid. It holds whenρ is strictly less than unity.

To see the effect of smaller values ofp with s fixed we give in Table 6 the results with
s = 100 ands = 1000, andp = 2−n, n = 10, 11, 12, . . . , 20. We see, as expected, that
the relative errors become smaller asp decreases.
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Table 5: Numerical results of the approximation (4.18) of Equation (4.3) forp = 0.0005
andp = 0.0001 and several values ofs.

p = 0.0005 p = 0.0001

s λ rel. error λ rel. error

5 0.64858 100 4.65 10−6 0.45195 100 5.13 10−7

10 2.80279 100 8.02 10−6 2.26012 100 8.90 10−7

25 1.22636 101 1.57 10−5 1.08800 101 1.69 10−6

50 3.12920 101 2.62 10−5 2.88661 101 2.72 10−5

75 5.18767 101 3.55 10−5 4.86150 101 3.59 10−6

100 7.32486 101 4.40 10−5 6.92647 101 4.38 10−6

250 2.08287 102 8.89 10−5 2.01034 102 8.30 10−6

500 4.42547 102 1.54 10−4 4.31411 102 1.36 10−5

1000 9.21730 102 2.72 10−4 9.04829 102 2.24 10−5

Table 6: Numerical results of the approximation (4.15) fors = 100 ands = 1000, and
p = 2−n for n = 10, 11, . . . , 20.

s = 100 s = 1000

n λ rel. error λ rel. error

10 7.517 101 1.24 10−4 9.300 102 8.80 10−4

11 7.318 101 4.25 10−5 9.215 102 2.62 10−4

12 7.138 101 1.54 10−5 9.138 102 8.57 10−5

13 6.972 101 5.77 10−6 9.067 102 3.00 10−5

14 6.818 101 2.24 10−6 9.003 102 1.10 10−5

15 6.674 101 8.87 10−7 8.942 102 4.18 10−6

16 6.539 101 3.59 10−7 8.885 102 1.64 10−6

17 6.412 101 1.48 10−7 8.831 102 6.54 10−7

18 6.291 101 6.18 10−8 8.780 102 2.67 10−7

19 6.177 101 2.61 10−8 8.732 102 1.10 10−7

20 6.067 101 1.12 10−8 8.685 102 4.63 10−8

5 Using the uniform asymptotic representation of Q(s, λ)

The expansions used for the incomplete gamma functionQ(s, λ) (or Γ(s, λ)), see (3.1),
are valid whenλ is large with respect tos. The expansion in (A.6) is more powerful; it
holds whenr = s/λ belongs to an interval[0, r0], wherer0 is a fixed number,r0 < 1.
Next we consider an approximation ofQ(s, λ) that is valid for larges, and which holds
uniformly with respect toλ ≥ 0.

Let

erfc z =
2√
π

∫ ∞

z
e−t

2

dt (5.1)

denote the complementary error function. We use quantitiesρ andη defined by the relation
in (4.9) (see also Appendix C). Then we have

Q(s, λ) = 1
2
erfc

(

η
√

s/2
)

+Rs(η), (5.2)
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whereRs(η) has the asymptotic representation

Rs(η) =
e−

1

2
sη2

√
2πs

Ss(η), Ss(η) ∼
∞
∑

n=0

Cn(η)

sn
, s→ ∞. (5.3)

This asymptotic expansion is valid forη ∈ R, that is, forρ ≥ 0, or λ ≥ 0. A few details
on the coefficientsCn(η) are given in Appendix D.

The inversion problem (1.2) is written in the form (for the functionΓ∗ see (4.5))

B(s, λ)−1 = 1 +
√

2πsΓ∗(s)e
1

2
sη2Q(s, λ), (5.4)

or as

e
1

2
sη2Q(s, λ) =

q√
2πsΓ∗(s)

, q =
1 − p

p
. (5.5)

Next we use (5.2), in which the complementary error functionis the main approximant.
We try to find a numberη0 defined by the equation

1
2e

1

2
sη2

0erfc
(

η0

√

s/2
)

=
q√

2πsΓ∗(s)
. (5.6)

The left-hand side is a function of one variable, and, hence,the inversion of this equation
is simpler than that of (5.5).

Let y = η0

√

s/2. The inversion problem (5.6) then reads

f(y) = 1
2
ey

2

erfc y − κ = 0, κ =
q√

2πsΓ∗(s)
. (5.7)

We have

f ′(y) = yey
2

erfc y − 1√
π

= 2y(f(y) + κ) − 1√
π
. (5.8)

Equation (5.7) can easily be solved numerically, for example by using Newton’s method.
When we have computedy andη0 = y

√

2/s we can compute a first approximation ofρ,
sayρ0, from (4.9) withη replaced withη0 andsign(η0) = sign(ρ0 − 1). After findingρ0,
we have a first approximation ofλ, sayλ0, fromλ0 = sρ0.

In Table 7 we give the results of this first approximationλ0 for fixed s = 100 and
several values ofp. We see a better performance for values ofp near0 and1. In Table 8
we give the results for fixedp = 0.1 andp = 0.01 and several values ofs. We see that
larger values ofs do not give a better approximation.

5.1 Bounds

From (5.4) and (5.2) we obtain

B(s, λ)−1 ∼
√
s

2φ(η
√
s)

erfc(η
√

s/2), (5.9)

with φ(x) = 1√
2π
e−

1

2
x2

. Including more terms ofRs(η) in (5.2) is expected to yield
sharper approximations. The approximation (5.9) can be complemented by bounds derived
in [10]:

B(s, λ)−1 ≤
√
s

2φ(η
√
s)

erfc(η
√

s/2) +
2

3
+

√
s

φ(η
√
s)(12s − 1)

, (5.10)

B(s, λ)−1 ≥
√
s

2φ(η
√
s)

erfc(η
√

s/2) +
2

3
. (5.11)

10



Table 7: Numerical results of the approximation based on theinversion of (5.6) fors = 100
and several values ofp.

p λ0 B(s, λ0) rel.error

1.000 10−4 6.926 101 1.00004 10−4 3.64 10−5

1.000 10−1 1.047 102 1.03411 10−1 3.41 10−2

2.000 10−1 1.230 102 2.13512 10−1 6.76 10−2

3.000 10−1 1.464 102 3.29897 10−1 9.97 10−2

4.000 10−1 1.802 102 4.51501 10−1 1.29 10−1

5.000 10−1 2.342 102 5.76112 10−1 1.52 10−1

6.000 10−1 3.316 102 6.99680 10−1 1.66 10−1

7.000 10−1 5.404 102 8.15367 10−1 1.65 10−1

8.000 10−1 1.144 103 9.12675 10−1 1.41 10−1

9.000 10−1 4.537 103 9.77965 10−1 8.66 10−2

9.990 10−1 4.998 107 9.99998 10−1 9.99 10−4

Table 8: Numerical results of the approximation based on theinversion of (5.6) forp = 0.1
andp = 0.01 and several values ofs.

p = 0.1 p = 0.01

s λ0 rel. error λ0 rel. error
5 2.929 100 3.99 10−2 1.362 100 4.48 10−3

10 7.597 10
0

3.73 10−2 4.464 100 4.05 10−3

25 2.301 10
1

3.53 10−2 1.613 101 3.73 10−3

50 4.988 10
1

3.46 10−2 3.791 101 3.58 10−3

75 7.718 10
1

3.43 10−2 6.074 101 3.53 10−3

100 1.047 102 3.41 10−2 8.408 101 3.49 10−3

250 2.709 10
2

3.38 10−2 2.283 102 3.42 10−3

500 5.490 10
2

3.37 10−2 4.741 102 3.39 10−3

1000 1.106 10
3

3.36 10−2 9.713 102 3.37 10−3

These bounds, and hence (5.9), are particularly sharp for the caseλ < s (η < 0). The
accuracy deteriorates withη, but improves whens is increasing. Examples fors = 10 and
s = 20 are depicted in Figures 2 and 3, respectively. In the presentstudy we refrain from
using the bounds for inversion purposes, since the asymptotic inversion introduced in§5
already leads to highly accurate results in the caseλ < s. Bounds similar to but sharper
than (5.10) and (5.11) can be found in [10].

5.2 Higher order approximation

It is possible to obtain higher approximations, as in [15] for the asymptotic inversion of the
equationQ(s, λ) = c, 0 < c < 1, for large values ofs, by using the uniform asymptotic
representation ofQ(s, λ) given in (5.2). Then the inversion problem (5.5) can be written
as

e
1

2
sη2
[

1
2
erfc

(

η
√

s/2
)

+Rs(η)
]

=
q√

2πsΓ∗(s)
, q =

1 − p

p
. (5.12)

11
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Figure 2:B(s, λ) and lower and upper bounds fors = 10 andλ ∈ [0, 30].

5 10 15 20 25 30

0.1

0.2

0.3

Figure 3:B(s, λ) and lower and upper bounds fors = 20 andλ ∈ [0, 30].

We can derive an asymptotic expansion of the solutionη of this equation in the form

η ∼ η0 +
η1

s
+
η2

s2
+ . . . , s→ ∞, (5.13)

whereη0 is the solution of (5.6) and the higher order coefficientsηj , j ≥ 1 can be obtained
by substituting the expansion (5.13) in to (5.12), after replacingRs(η) by the expansion
given in (5.3). Details of this analysis are given in Appendix D. The first coefficient is
found to be

η1 =
1

η0
ln

(

1 +
η0C0(η0)

1 − η0q/Γ∗(s)

)

, (5.14)

whereC0(η) is the first coefficient in the expansion in (5.3).
With η ∼ η0 + η1/s the correspondingλ−value follows from solving (4.9) forρ, from

which we obtain an approximationλ = ρs. The argument of the logarithm in (5.14) will
become negative whenp ↑ 1 (q ↓ 0), becauseη0q/Γ

∗(s) will approach unity in that case.
In Fig. 4 the upper curve corresponds to valuess andpwhere the argument of the logarithm
in (5.14) vanishes.

12



p
1.0

50 100

0.5

s
0

Figure 4: For values ofs andp above the upper curve the argument of the logarithm in
(5.14) is negative, and the expansion in (5.13) is useless inthat case. The lower curve
corresponds with valuess andp where in (4.8) the equal sign holds.

In Table 9 we give the results of numerical computations. We takep = 0.1 andp = 0.01
and several values ofs. We have used the termη1 of (5.14) in the expansion (5.13).
Comparing the results with those of Table 8 we see forp = 0.1 an improvement for the
smaller values ofs. It appears that the argument of the logarithm in (5.14) becomes smaller
ass increases.

6 Newton’s method for inverting B(s, λ)

Jagerman [9] uses Newton’s method to derive an iteration that is well suited for determining
the inverseλ that solves the equationB(s, λ) = p. In the context of the present study,
Newton’s method can be applied for computing even better approximations ofλ through

λ(n+1) = λ(n) − B(s, λ(n)) − p

(s/λ(n) − 1 +B(s, λ(n)))B(s, λ(n))
, n = 0, 1, . . . , (6.1)

with λ(0) an asymptotic approximation.
For the asymptotic approximations given in§3.1,§4, and§5.2 we selected 30.000 ran-

dom pairs(p, s), with s ∈ [5, 1000] andp in intervals which depend on the method.
For the asymptotic approximation (3.9) forp ↑ 1 we used all coefficientsλj given in

(4.9). We tookp ∈ (0.1, 0.9999), and we found that the Newton process always converges
to at least 10 digits accuracy inλ, with at most 4 iterations. For the asymptotic approxi-
mation (4.18) for small values ofp we used the coefficientsηj given in (4.19)–(4.20). We
tookp ∈ (3.05 10−5, 1.8 10−2), p ands such thatpΓ∗(s)

√
2πs ≤ 0.1 (see Equation (4.8)),

and found that the Newton process always converges to at least 10 digits accuracy inλ,
with at most 3 iterations. Finally, for the approximation (5.13), with η1 given in (5.14),
we tookp ∈ (0.30 10−5, 0.5), and found that the Newton process always converges to at

13



Table 9: Numerical results of the approximation based on theinversion of (5.12) forp =
0.1 andp = 0.01 and several values ofs by using (5.13), only withη1 of (5.14).

p = 0.1 p = 0.01

s λ0 rel. error λ0 rel. error
5 2.881 100 3.50 10−4 1.361 100 1.67 10−5

10 7.510 100 4.15 10−4 4.461 100 4.01 10−6

25 2.283 101 6.32 10−4 1.612 101 1.36 10−6

50 4.955 101 9.24 10−4 3.790 101 1.34 10−6

75 7.673 101 1.18 10−3 6.073 101 1.49 10−6

100 1.041 102 1.43 10−3 8.406 101 1.63 10−6

250 2.695 102 2.86 10−3 2.283 102 2.20 10−6

500 5.464 102 5.42 10−3 4.740 102 2.79 10−6

1000 1.100 103 1.21 10−2 9.712 102 3.64 10−6

least 10 digits accuracy inλ, with at most 5 iterations. The small values ofp require only
2 iterations.

7 The inversion of the Erlang C formula

The Erlang C gives the steady-state probability of delay in the Erlang delay model or
M/M/s queue. It can be expressed in terms of the Erlang B formula as

C(s, λ)−1 =
λ

s
+

(

1 − λ

s

)

B(s, λ)−1, λ < s. (7.1)

Note that we now impose the conditionλ < s. For more background on the Erlang C
formula we refer to [3, 12, 13, 18]. In this section we consider the inversion problem of
p = C(s, λ) , p ∈ (0, 1) for a given (possibly large) value ofs.

Fig. 5 shows graphs ofC(s, ρs) for 0 ≤ ρ ≤ 1 ands = 1, 3, 5, 10, 25, 50, 100, 1000
(the far left curve is fors = 1, the far right one fors = 1000).

7.1 Inversion of C(s, λ) for p ↓ 0

We write the inversion problem in the form

p−1 = ρ+ (1 − ρ)

(

1 +
√

2πsΓ∗(s)e
1

2
sη2 −

∞
∑

n=0

gn(ρ)

sn

)

, ρ =
λ

s
, (7.2)

where we have used (2.1), (2.2), (4.1), (4.5), (4.9), (4.10), and (B.6). We try to find the
coefficientsηj in the expansion

η = η0 + η1s
−1 + η2s

−2 + η3s
−3 . . . . (7.3)

To obtain the first coefficientη0, we neglect in (7.2) the term1 − g0(ρ), the remaining
terms of the series, and the other two quantitiesρ (whenp is small,ρ is small as well).
Thus we consider (cf. (4.11))

p−1 =
√

2πsΓ∗(s)e
1

2
sη2

0 , (7.4)
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Figure 5: Graphs ofC(s, ρs) for 0 ≤ ρ ≤ 1 ands = 1, 3, 5, 10, 25, 50, 100, 1000 (the far
left curve is fors = 1, the far right one fors = 1000.

wherep satisfies the same condition as forp in (4.8). We obtain from (7.4) as a first
approximation toη the solution

η0 = −
√

−2

s
ln
(

p
√

2πsΓ∗(s)
)

. (7.5)

Proceeding as in§4 we eliminate
√

2πsΓ∗(s) by using (7.4), which gives for (7.1) the
relation

p−1 = ρ+ (1 − ρ)

(

1 +
1

p
e

1

2
s(η2−η2

0
) −

∞
∑

n=0

gn(ρ)

sn

)

. (7.6)

Expandingρ as in (4.15) we find after series manipulations

η1 = − 1

η0
ln(1 − ρ0), (7.7)

η2 = −η
2
1(1 − ρ0)

2 + 2η1ρ0η0 + 2pρ0)

2η0(1 − ρ0)2
, (7.8)

and

η3 =
c3η

3
1 + c2η

2
1 + c1η1 + c0

2η2
0(1 − ρ0)4

, (7.9)

where

c0 = −pη0ρ0(−6ρ0 + pρ0 − 2),

c1 = 2ρ0(p(1 − ρ0)
2 + η2

0ρ0 + pρ0η
2
0 + pη2

0),

c2 = η0ρ0(2(1 − ρ0)
2 + η2

0(1 + ρ0)),

c3 = (1 − ρ0)
4.

(7.10)

When we have computed the valuesηj we use (7.3) for obtaining the approximation of
η, from which the correspondingρ follows by inverting (4.9), which finally givesλ = ρs.

In Table 10 numerical results are given of the approximation(7.3) of equation (7.2) for
p = 0.0005 andp = 0.0001 and several values ofs. We see that the results become worse
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Table 10: Numerical results of the approximation (7.3) of equation (7.2) forp = 0.0005
andp = 0.0001 and several values ofs.

p = 0.0005 p = 0.0001

s λ rel. error λ rel. error

5 0.28896 100 2.43 10−5 0.44284 100 3.81 10−6

10 2.68457 100 2.83 10−4 2.18941 100 6.70 10−5

25 1.16831 101 2.45 10−3 1.04748 101 6.99 10−4

50 2.98508 101 8.22 10−3 2.78015 101 2.45 10−3

75 4.95860 101 1.51 10−2 4.68881 101 4.54 10−3

100 7.01351 101 2.25 10−2 6.68938 101 6.76 10−3

250 2.00682 102 7.02 10−2 1.95167 102 2.06 10−2

500 4.28379 102 1.49 10−1 4.20576 102 4.29 10−2

1000 8.95836 102 2.91 10−1 8.85585 102 8.29 10−2

ass increases. To explain this, we observe that in the table the ratioλ/s approaches unity
for larger values ofs. In that case the approximation (7.3) is not valid. To see theeffect of
smaller values ofpwith s fixed we give in Table 11 the results withs = 100 ands = 1000,
andp = 2−n, n = 10, 11, 12, . . . , 20. We see, as expected, that the relative errors become
smaller asp decreases.

Table 11: Numerical results by using approximation (7.3) for s = 100 ands = 1000, and
p = 2−n for n = 10, 11, 12, . . . , 20.

s = 100 s = 1000

n λ rel. error λ rel. error

10 7.159 101 4.18 10−2 8.979 102 5.30 10−1

11 7.008 101 2.21 10−2 8.957 102 2.85 10−1

12 6.864 101 1.26 10−2 8.916 102 1.60 10−1

13 6.727 101 7.72 10−3 8.869 102 9.52 10−2

14 6.597 101 4.95 10−3 8.822 102 6.00 10−2

15 6.474 101 3.31 10−3 8.776 102 3.96 10−2

16 6.356 101 2.29 10−3 8.731 102 2.72 10−2

17 6.243 101 1.62 10−3 8.687 102 1.93 10−2

18 6.135 101 1.18 10−3 8.644 102 1.41 10−2

19 6.032 101 8.78 10−4 8.603 102 1.05 10−2

20 5.932 101 6.63 10−4 8.563 102 8.05 10−3

When we compare the results of the casep ↓ 0 with the corresponding results for the
Erlang B formula in§4, we observe that the present results are worse, even when wehave
one extra term in the expansion (7.3) (cf. (4.18)). An explanation might be that in the
simplified Equation (7.4), for computing the first termη0, more terms are neglected in
(7.2) than in the corresponding case of§4 (cf. (4.3) and (4.11)).
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7.2 Inversion of C(s, λ) for p ↑ 1

We use in (7.1) representation (5.3) and obtain the inversion problem

p−1 = ρ+ (1 − ρ)
(

1 +
√

2πsΓ∗(s)e
1

2
sη2
[

1
2
erfc(η

√

s/2) +Rs(η)
])

, (7.11)

which we solve forη given in (4.9). Whenp ↑ 1 we have for the solutionλ the estimate
λ ∼ s, that is,ρ ∼ 1 ∼ −η (see (C.4)), and we consider for a first approximation toη the
reduced equation (compare with (5.6) and (5.7))

1 − p

p
√
πΓ∗(s)

= −η
√

s/2e
1

2
sη2erfc(η

√

s/2), (7.12)

the solution of which will be calledη0. This gives the first coefficient of the expansion
(7.3).

To find higher coefficientsηj we proceed as in§5 and Appendix D. We expandρ as in
(4.15) and in this way we find the equivalent of (D.14), which reads for the present case

∞
∑

n=0

Cn(η0)s
−n +

εs

1!

∞
∑

n=0

D(1)
n (η0)s

−n +
(εs)2

2!

∞
∑

n=0

D(2)
n (η0)s

−n + . . .

∼ 1 − p

η0pΓ∗(s)

[

1 − η0

ρ− 1
e−

1

2
s(η2−η2

0
)

]

.

(7.13)

The coefficientsD(k)
n (η0) are given in (D.15). Expanding in powers ofs−1, using (4.15),

and comparing terms with powerss0, we find

η1 =
1

η0
ln

η0

ρ0 − 1
, (7.14)

which, for small values of|η0|, can be expanded as

η1 = −1
3 + 1

36η0 + 1
1620η

2
0 − 7

6480η
3
0 + . . . . (7.15)

In Table 12 we give numerical results withs = 100 ands = 1000, andp = 1 − 2−n,
n = 1, 2, . . . , 10. We see a rather uniform relative error for these values ofp ands.

7.3 Newton’s method for inverting C(s, λ)

For computing better approximations ofλ that solves the equationC(s, λ) = p, Newton’s
method result in the scheme

λ(n+1) = λ(n) − C(s, λ(n)) − p

C ′(s, λ(n))
,

C ′(s, λ) =
dC(s, λ)

dλ
=

(λ+ (s− λ)2 + λ(1 − C(s, λ)))C(s, λ)

λ(s− λ)
,

(7.16)

with λ(0) an asymptotic approximation.
For the asymptotic approximations given in§7.1,§7.2, we selected 30.000 random pairs

(p, s), with s ∈ [5, 1000] andp in intervals which depend on the method. For the asymp-
totic approximation (7.3) for small values ofp we used the coefficientsηj given in (7.7)–
(7.9). We tookp ∈ (3.05 10−6 , 1.01 10−2), such thatpΓ∗(s)

√
2πs ≤ 0.1 (see the remark

after Equation (7.4)), and found that the Newton scheme always converges to at least 10
digits accuracy inλ, with at most 6 iterations. For the approximationη ∼ η0 + η1/a of
§7.2, withη1 given in (7.14), we tookp ∈ (0.1, 0.9999), and found that the Newton scheme
always converges to at least 10 digits accuracy inλ, with at most 4 iterations.
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Table 12: Numerical results by using approximation (7.3) with η1 given in (7.5) fors =
100 ands = 1000, andp = 1 − 2−n for n = 1, 2, . . . , 10.

s = 100 s = 1000

p λ rel. error λ rel. error

5.000 10−1 9.470 101 3.17 10−2 9.838 102 1.03 10−2

7.500 10−1 9.748 101 3.63 10−2 9.927 102 1.18 10−2

8.750 10−1 9.863 101 3.83 10−2 9.964 102 1.24 10−2

9.375 10−1 9.916 101 3.92 10−2 9.981 102 1.27 10−2

9.688 10−1 9.942 101 3.97 10−2 9.989 102 1.29 10−2

9.844 10−1 9.954 101 3.99 10−2 9.993 102 1.30 10−2

9.922 10−1 9.960 101 4.00 10−2 9.995 102 1.30 10−2

9.961 10−1 9.964 101 4.01 10−2 9.996 102 1.30 10−2

9.980 10−1 9.965 101 4.01 10−2 9.996 102 1.30 10−2

9.990 10−1 9.966 101 4.01 10−2 9.996 102 1.30 10−2

A An alternative asymptotic expansion of Γ(s, λ) for large λ

The asymptotic expansion in (3.1) is of no use whens becomes large as well. We give a
different expansion in which the range ofs can be extended, say in the senses < λ−A

√
λ,

whereA is a fixed positive number andλ is large.
We write

Γ(s, λ) = λs
∫ ∞

1
ts−1e−λt dt = λse−λ

∫ ∞

1
e−λψ(t) dt

t
, (A.1)

where
ψ(t) = t− r ln t− 1, s = rλ. (A.2)

We writef0(t) = 1 and integrate by parts

Γ(s, λ) = λse−λ
∫ ∞

1

f0(t)

t
e−λψ(t) dt = −λs−1e−λ

∫ ∞

1

f0(t)

t− r
de−λψ(t), (A.3)

which gives

Γ(s, λ) = λs−1e−λ
[

G0(r) +

∫ ∞

1
e−λψ(t) f1(t)

t
dt

]

, (A.4)

where

G0(r) =
1

1 − r
, f1(t) = t

d

dt

f0(t)

t− r
. (A.5)

Continuing this we obtain

Γ(s, λ) = λs−1e−λ
[

N−1
∑

n=0

Gn(r)

λn
+

1

λN−1
RN ,

]

, N = 0, 1, 2, . . . , (A.6)

where

fn(t) = t
d

dt

fn−1(t)

t− r
, Gn(r) =

fn(1)

1 − r
, n = 0, 1, 2, . . . (A.7)
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and

Rn =

∫ ∞

1
e−λψ(t) fn(t)

t
dt. (A.8)

The expansion in (A.6) holds for large values ofλ, with r = s/λ satisfying0 ≤ r ≤
r0 < 1, wherer0 is fixed.

We have the recursion for the coefficients

Gn+1(r) =
r−n

r − 1

d

dr

[

rn+1Gn(r)
]

, n = 1, 2, 3, . . . , (A.9)

and the first few are given by

G0(r) =
1

1 − r
, G1(r) = − 1

(1 − r)3
, G2(r) =

2 + r

(1 − r)5
,

G3(r) = −6 + 8r + r2

(1 − r)7
, G4(r) =

24 + 58r + 22r2 + r3

(1 − r)9
.

(A.10)

The expansion in (A.6) is the same as the one given in [7, Eq. (19)], where it is derived
for Γ(s+ 1, λ). In Hwang’s notation we have

f̃0(r) = G0(r), f̃j(r) = (−1)jrGj(r), j = 1, 2, 3, . . . . (A.11)

This relation follows fromΓ(s+1, λ) = sΓ(s, λ)+λse−λ. The expansion in (A.6) follows
also from [16, Eq. (4.1)], where it is derived withs replaced with−s, with s as the large
parameter.

B An alternative asymptotic expansion of γ(s, λ) for large s

The convergent expansion in (4.2) for the incomplete gamma function γ(s, λ) has an
asymptotic property for large values ofs. Whens andλ are of the same order this prop-
erty is lost. We derive an asymptotic expansion forγ(s, λ) that holds for larges and
0 ≤ λ ≤ s(1 − δ), whereδ is a fixed positive number,δ < 1. This expansion is of the
same nature as the expansion forΓ(s, λ) given in Appendix A, which holds for largeλ and
0 ≤ s ≤ λ(1 − δ).

We start with the integral representation

γ(s, λ) =

∫ λ

0
ts−1e−t dt, ℜs > 0, (B.1)

and write it in the form

eλλ−sγ(s, λ) =

∫ 1

0
esψ(t)f0(t) dt, (B.2)

where

f0(t) =
1

1 − t
, ψ(t) = ρt+ ln(1 − t), ρ =

λ

s
. (B.3)

We assume thatρ ∈ (0, 1). In that case,ψ′(t) 6= 0 on (0, 1).
Integrating by parts gives (observe thatψ(0) = 0 andψ′(0) = ρ− 1)

eλλ−sγ(s, λ) =
1

s

∫ 1

0
f0(t)

desψ(t)

ψ′(t)
=

1

s

f0(0)

1 − ρ
+

1

s

∫ 1

0
esψ(t)f1(t) dt, (B.4)
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where

f1(t) = − d

dt

f0(t)

ψ′(t)
. (B.5)

Repeating these steps gives the expansion

eλλ−sγ(s, λ) ∼ 1

s

∞
∑

n=0

gn(ρ)

sn
, gn(ρ) =

fn(0)

1 − ρ
, (B.6)

which holds ass→ ∞, uniformly for fixedρ ∈ (0, 1), and where

fn+1(t) = − d

dt

fn(t)

ψ′(t)
, n = 0, 1, 2, . . . , (B.7)

with f0(t) given in (B.3).
Forgn(ρ) we have the recursion

gn+1(ρ) = − ρ

1 − ρ

d

dρ
gn(ρ), n = 0, 1, 2, . . . , (B.8)

and the first few are

g0(ρ) =
1

1 − ρ
, g1(ρ) = − ρ

(1 − ρ)3
, g2(ρ) =

ρ(2ρ+ 1)

(1 − ρ)5
,

g3(ρ) = −ρ(6ρ
2 + 8ρ+ 1)

(1 − ρ)7
, g4(ρ) =

ρ(24ρ3 + 58ρ2 + 22ρ+ 1)

(1 − ρ)9
.

(B.9)

The relation with the coefficientsGn(r) given in Appendix 2 forΓ(s, λ) reads

ρn+1gn(ρ) = (−1)nGn(1/ρ), n = 0, 1, 2, . . . . (B.10)

C On the inversion of Equation (4.9)

We recall the relation

1
2η

2 = ρ− 1 − ln ρ, ρ > 0, sign(η) = sign(ρ− 1). (C.1)

To invert this equation, we can use the LambertW function, the solutionW (x) of the
equationWeW = x. For example, we can write the equation in the form (usingy = 1

2η
2)

−ρe−ρ = −e−y−1 ⇒ ρ = e−W (− exp(−y−1))−y−1, (C.2)

which is given by Maple, althoughρ = −W (− exp(−y − 1)) can also be viewed as a
formal solution. The problem is the multi-valuedness of this function, and we like to view
the solutionρ(η) of (C.1) as one analytic function onR (and in a certain domain of the
complex plane, which is not our concern at this moment).

It is not difficult to computeρ(η), for example by using Newton’s method, and it is
convenient to have reliable starting values for this method. Let η 6= 0 and letρ(0) 6= 1 be a
starting value. Then we can compute better approximations of ρ through

ρ(n+1) = ρ(n) − ρ(n) − 1 − ln ρ(n) − 1
2η

2

1 − 1/ρ(n)
= ρ(n) ln ρ

(n) + 1
2η

2

ρ(n) − 1
, n = 0, 1, . . . . (C.3)

20



For obtaining a starting value for small values of|η|, we can use the expansion

ρ = 1 + η + 1
3
η2 + 1

36
η3 − 1

270
η4 + 1

4320
η5 + O

(

η6
)

. (C.4)

The complete expansion converges for|η| < 2
√
π (as explained for a corresponding inver-

sion in [17, pp. 284-286]).
Whenη < 0 we have the convergent expansion

ρ =
∞
∑

k=1

kk−1δk

k!
, δ = e−1− 1

2
η2 . (C.5)

This expansion converges very fast whenη is not close to zero, and it follows from applying
the Lagrange inversion formula (see [4, pp. 22-23].

Forη → +∞ we can use

ρ = τ + σ +

∞
∑

k=1

ck
τk
, τ = 1 + 1

2η
2, σ = ln τ, (C.6)

where

c1 = σ, c2 = σ − 1
2
σ2, c3 = σ − 3

2
σ2 + 1

3
σ3,

c4 = σ − 3σ2 + 11
6 σ

3 − 1
4σ

4.

(C.7)

This expansion follows from a similar analysis as given in [4, §2.5].

D Details on the uniform expansion and its asymptotic inversion

The first few coefficients of the expansion in (5.3) are (see [14])

C0(η) =
1

ρ− 1
− 1

η
, C0(0) = −1

3
,

C1(η) =
1

η3
− 1

(ρ− 1)3
− 1

(ρ− 1)2
− 1

12(ρ − 1)
, C1(0) = − 1

540
,

(D.1)

and the higher coefficients an be obtained from the recurrence relation

ηCn(η) =
d

dη
Cn−1(η) +

η

ρ− 1
γn, n ≥ 1, (D.2)

where the numbersγn appear in the well-known asymptotic expansion of the Euler gamma
function. That is, we use (see also (4.5)) the asymptotic expansion

Γ∗(s) ∼
∞
∑

n=0

(−1)nγns
−n, s→ ∞, (D.3)

where
γ0 = 1, γ1 = − 1

12
, γ2 = 1

288
, γ3 = 139

51840
, γ4 = − 571

2488320
. (D.4)

Next we give the analysis of the asymptotic inversion of the uniform expansion. We
consider (5.12) and substituteη = η0 + ε, whereη0 is the solution of (5.6). We assume
thatε is small and expand in Taylor series. In this way we obtain

1
2

∞
∑

k=1

εk

k!

dk

dηk
erfc

(

η
√

s/2
)

+

∞
∑

k=0

εk

k!

dk

dηk
Rs(η) =

q(e−
1

2
sη2 − e−

1

2
sη2

0)√
2πsΓ∗(s)

, (D.5)
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where the derivatives are evaluated atη0.
We replace the derivatives ofRs(η) by derivatives of the expansion in (5.3) (from

asymptotic analysis it follows that the expansion may be differentiated). In this way,

dk

dηk
Rs(η) ∼ sk

e−
1

2
sη2

√
2πs

∞
∑

n=0

C
(k)
n (η)

sn
, (D.6)

where
C(0)
n (η) = Cn(η), n ≥ 0, C

(k)
0 (η) = −ηC(k−1)

0 (η), k ≥ 1, (D.7)

and

C(k)
n (η) = −ηC(k−1)

n (η) +
d

dη
C

(k−1)
n−1 (η), k, n ≥ 1. (D.8)

Observe thatC(k)
n (η) is not thekth derivative ofCn(η). The relation (D.8) follows easily

from the relations in (5.3).
The derivatives of the complementary error function in (D.5) can be replaced by deriva-

tives of the exponential function, see (5.1), and we can use Hermite polynomials. We have
[17, p. 145]

Hn(z) = (−1)nez
2 dn

dzn
e−z

2

, n = 0, 1, 2, . . . , (D.9)

and it follows that fork ≥ 1

1
2

dk

dηk
erfc

(

η
√

s/2
)

= (−1)k
(

1
2s
)

1

2
k e−

1

2
sη2

√
π

Hk−1

(

η
√

s/2
)

. (D.10)

We wish to write this in the same form as the right-hand side of(D.6). This can be done by
using the explicit representation of the Hermite polynomials. That is, we use [17, p. 153]

Hn(z) = n!

⌊n/2⌋
∑

m=0

(−1)m
(2z)n−2m

m! (n− 2m)!
. (D.11)

This gives

1
2

dk

dηk
erfc

(

η
√

s/2
)

= sk
e−

1

2
sη2

√
2πs

⌊(k−1)/2⌋
∑

n=0

h
(k)
n (η)

sn
, k ≥ 1, (D.12)

where, fork ≥ 1 andn = 0, 1, 2, . . . , ⌊(k − 1)/2⌋,

h(k)
n (η) = (−1)k+n2−nηk−1−2n (k − 1)!

n! (k − 1 − 2n)!
. (D.13)

Substituting (D.6) and (D.12) into (D.5), we obtain, after some manipulations, the asymp-
totic equality

∞
∑

n=0

Cn(η)s
−n +

εs

1!

∞
∑

n=0

D(1)
n (η)s−n +

(εs)2

2!

∞
∑

n=0

D(2)
n (η)s−n + . . .

∼ q(e−
1

2
sε2−sηε − 1)

Γ∗(s)
,

(D.14)
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with η = η0 and where the coefficientsD(k)
n (η) are given by

D(k)
n (η) = C(k)

n (η) + h(k)
n (η), n ≥ 0, k ≥ 1. (D.15)

We assume an expansion ofε of the form (cf. (5.13))

ε ∼ η1

s
+
η2

s2
+ . . . , s→ ∞, (D.16)

and collect coefficients of equal powers ofs. In this way we can findηk. For η1 we find
the equation

C0(η0) +

∞
∑

k=1

ηk1
k!
D

(k)
0 (η0) =

q(e−η0η1 − 1)

Γ∗(s)
. (D.17)

From (D.7) and (D.13) we find

C
(k)
0 (η) = (−η)kC0(η), h

(k)
0 (η) = −(−η)k−1, k ≥ 1. (D.18)

This gives
D

(k)
0 (η) = −(−η)k−1 (1 + ηC0(η)) , k ≥ 1. (D.19)

Evaluating the series in (D.17) we obtain

η0C0(η0) + (1 + η0C0(η0))
(

e−η0η1 − 1
)

= η0
q(e−η0η1 − 1)

Γ∗(s)
. (D.20)

Solving forη1 gives the value used in (5.14). That is,

η1 =
1

η0
ln

(

1 +
η0C0(η0)

1 − η0q/Γ∗(s)

)

. (D.21)
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